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Abstract

Given the stationary process X;, t €Z, that satisfies the discrete ARMA
model (DARMA)

p q
Xo=> 60X+ Y ey (1)
=1 k=0

where ¢, is white noise with finite variance, the problem of obtaining a process
satisfying a continuous version of the DARMA model (a CARMA), such that
when sampled at discrete times has the same auto-covariance function as
{X.} has been studied by several authors and termed the embedding problem.
In [6], [8], [2] and [4] have established embeddings of some DARMA(p, q)
processes in continuous ARMA(p, q), for 0 < g < p. In [9] there are necessary
and sufficient conditions for a DARMA process to be embedded in a CARMA
process.

Brockwell in [2, 3] proposes to define CARMA processes via a state space
representation of the formal equation

a(D)Y (t) = ob(D)DA(?)

where o > 0 is a scale parameter, D denotes differentiation w.r.to ¢, A is
a second-order Lévy process, a(z) = zF 4+ a12P~' + ... + a, is a polynomial
of order p and b(z) = by + by + ... + by2? is a polynomial of order ¢q. The
resulting CARMA is a linear function of a continuous vector autoregressive

(CVAR) Markovian process.



This formalism has some limitations:
e If ¢ > p, it requires the use of generalised processes [7].
e Even for ¢ < p, not every DARMA processes are embeddable.

All these approaches to the embedding problem are only concerned with
the covariance structure of the processes involved, not with their probability
distributions besides the fact that, if the processes are Gaussian, the equality
of the first- and second-order moments entails the equality of the probability
laws. In general, the discretised version of the CARMA will not necessarily
have the same law as the original DARMA. We propose a different approach
to construct for any DARMA(p, ¢) a continuous stationary embedding in law.
The precise statement is the following:

Theorem 1 Given the stationary DARMA(p,q) X; that satisfies (1) with
infinitely divisible innovations €, there exists at least one function L : RT —
R decaying exponentially at infinity and a Lévy process A on R, such that for
each real number a the stationary processes x; = fioo L(t — s)dA(s),t € R,
sampled at times a +t,t € Z, have the same joint law as X;.

In this presentation, we shall sketch the construction of the processes ;.
Details and proofs can be found in [1].
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