Cobordism Theory: Old and New

Ulrike Tillmann, Oxford

2016 BGSMath Scientific Meeting - Barcelona

Manifolds

M is a $manifold\ of\ dimension\ d$ if locally it is diffeomorphic to

$$\mathbb{R}^d$$
 or $\mathbb{R}^d_{\geq 0}$.

M is *closed* if it is compact and has no boundary.

Fundamental problem:

- classify compact smooth manifolds M of dim d;
- understand their group of diffeomorphisms Diff(M).

d any : the empty \varnothing set is a manifold of any dimension

d = 0: M is a collection of finitely many points

d=1: M is a collection of circles S^1 and intervals [0,1]

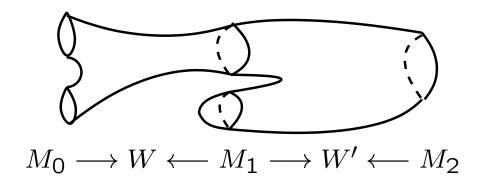
d=2: M is a collection of orientable surfaces $F_{g,n}$ and non-orientable surfaces $N_{g,n}$ of genus g and with n boundary components

Leitmotif = Classification of Manifolds

- 1. Classical Cobordism Theory (Thom, ...)
- 2. Topological Field Theory (Witten, Atiyah, Segal, ...)
- 3. Cobordism Hypothesis (Baez-Dolan, Lurie, ...)
- 4. Classifying spaces of cobordism categories
- Mumford conjecture (Madsen-Weiss, ...)
- —— Classification of invertible theories (GMTW)
- Filtration of the classical theory

1. Classical Cobordism Theory

Definition: Two closed oriented (d-1)-dimensional manifolds M_0 and M_1 are cobordant if there exists a compact oriented d-dimensional manifold W with boundary $\partial W = \bar{M}_0 \sqcup M_1$.



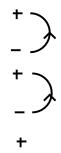
- equivalence relation; equivalence classes =: \mathfrak{N}_{d-1}^+ group with product \coprod and inverse $M^{-1}=\bar{M}$;
- graded ring $\bigoplus_{d>0} \mathfrak{N}_{d-1}^+$ with multiplication \times .

Examples:

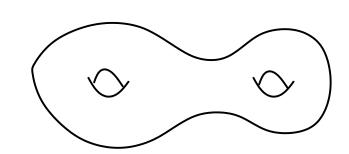
$$\mathfrak{N}_0^+ = \mathbb{Z}$$

$$\mathfrak{N}_1^+ = \{0\}$$

$$\mathfrak{N}_0^+ = \mathbb{Z} \qquad \mathfrak{N}_1^+ = \{0\} \qquad \qquad \mathfrak{N}_2^+ = \{0\}$$







Theorem (Thom)
$$\mathfrak{N}_d^+ = \pi_d(\Omega^{\infty} MSO)$$

where
$$\Omega^{\infty} MSO := \lim_{n \to \infty} \lim_{k \to \infty} \max_{s \to \infty} (S^n, (U_{n,k})^c)$$

and $U_{n,k} \to Gr^+(n,k)$ is the universal n-dimensional bundle over the Grassmannian manifold of oriented n-planes in \mathbb{R}^{n+k} .

$$M \subset \text{tubular neighbourhood } N(M) \subset \mathbb{R}^{d+n}$$

$$\mathsf{S}^{d+n} = (R^{d+n})^c \overset{collapse}{\longrightarrow} (N(M))^c \overset{\phi_{N(M)}}{\longrightarrow} (U_{n,d})^c$$

$$(x,v) \mapsto (N_x M,v).$$

Theorem (Thom) $\mathfrak{N}_*^+ \otimes \mathbb{Q} \simeq \mathbb{Q} [\mathbb{C}P^2, \mathbb{C}P^4, \dots].$

Proof: For fixed * and large n and k,

$$\pi_*(\Omega^{\infty} \mathbf{MSO}) \otimes \mathbb{Q} = \pi_*(\lim_{n \to \infty} \lim_{k \to \infty} \mathsf{maps}_*(S^n, (U_{n,k})^c)) \otimes \mathbb{Q}$$

$$= \pi_*(\mathsf{maps}_*(S^n, (U_{n,k})^c)) \otimes \mathbb{Q}$$

$$= \pi_{*+n}((U_{n,k})^c) \otimes \mathbb{Q}$$

$$= H_{*+n}((U_{n,k})^c) \otimes \mathbb{Q} \quad \text{by Serre}$$

$$= H_*(Gr^+(n,k)) \otimes \mathbb{Q} \quad \text{by Thom.}$$

Réné Thom (1923-2002); Fields Medal 1958

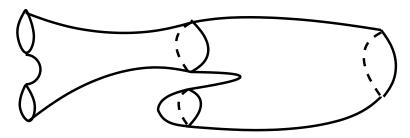
2. Topological Field Theory

 $\mathcal{C}ob_d^{\delta}$ is the discrete cobordism category with

Objects: closed oriented d-1 dimensional manifolds M

Morphisms from M_0 to M_1 : equivalence classes of d-dimensional cobordism W with $\partial W = \bar{M}_0 \sqcup M_1$ w.r.t. diffeomorphisms rel. boundary

Composition: gluing of cobordisms.



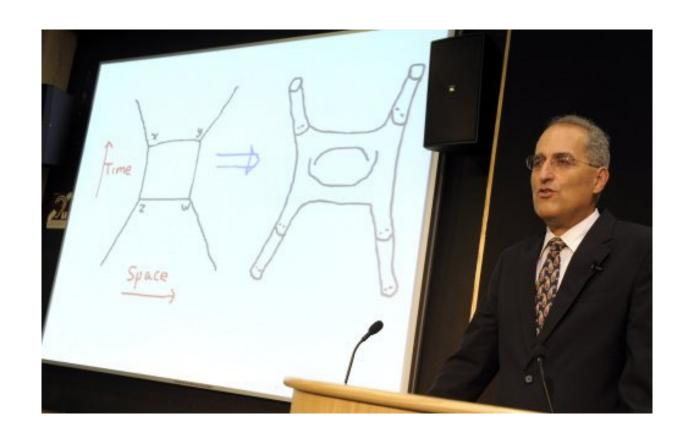
 $W' \circ W : M_0 \longrightarrow M_1 \longrightarrow M_2$

Definition: A *d-dimensional TFT* is a functor

$$\mathcal{F}: \mathcal{C}ob_d^{\delta} \longrightarrow \mathcal{V}$$

to the category \mathcal{V} of vector spaces that takes disjoint union of manifolds to tensor products of vector spaces.

Example: $\mathcal{F}(\emptyset) = \mathbb{C}$.



Edward Witten

Michael Atiyah

Motivation:

d-dimensional TFTs define topological invariants for d-dimensional closed manifolds:

If $\partial W = \emptyset$ then it defines a morphisms $W : \emptyset \to \emptyset$, and \mathcal{F} assigns a number to W depending only on its topology:

$$\mathcal{F}(W): \mathcal{F}(\varnothing) = \mathbb{C} \longrightarrow \mathcal{F}(\varnothing) = \mathbb{C}$$

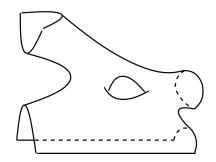
Physical inspiration: locality!

3. Cobordism Hypothesis

Categorification:

points, cobordisms, cobordisms of cobordisms, ...

 $\mathcal{C}ob_d^{\delta}$ replaced by d-fold category $ex\mathcal{C}ob_d^{\delta}$ \mathcal{V} replaced by a d-fold symmetric monoidal category \mathcal{V}_d extended TFTs: $ex\mathcal{C}ob_d^{\delta} \xrightarrow{\mathcal{F}} \mathcal{V}_d$.



Cobordism hypothesis (Baez-Dolan)

Extended TFTs are determined by $\mathcal{F}(*)$.

Example: 1-dimensional theories:

Let $\mathcal{F}(*_+) = V$ and $\mathcal{F}(*_-) = V'$.

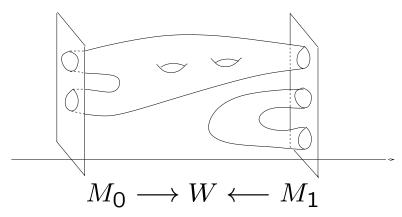
- evaluation $e:V\otimes V'\to\mathbb{C}$
- co-evaluation $e^*: \mathbb{C} \to V' \otimes V$
- ullet V is finite dimensional as

$$id:V \xrightarrow{id\otimes e^*} V \otimes V' \otimes V \xrightarrow{e\otimes id} V$$

• $e \circ e^* = \dim(V) : \mathbb{C} \to \mathbb{C}$

Enriched TFTs

Consider moduli spaces of all compact (d-1)- and d-manifolds embedded in $\mathbb{R}^{d+n}, n \to \infty$, to form the topological category Cob_d .



The homotopy type of the space of morphisms is

$$mor_{Cob_d}(M_0, M_1) \simeq \coprod_{W} BDiff(W; \partial)$$

where the disjoint union is taken over all diffeomorphism classes of cobordisms ${\cal W}.$

Theorem (Hopkins-Lurie (n = 2), Lurie (general)):

$$\mathcal{F}: ex\mathcal{C}ob_d^{fr} \to \mathcal{V}_d$$

is determined by $\mathcal{F}(*)$, the value on a point.

Vice versa, any object in \mathcal{V}_d satisfying certain duality and non-degeneracy properties gives rise to a TFT.

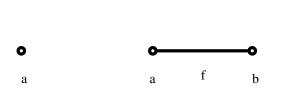
Here: W is *framed* if its stable normal bundle is trivial.

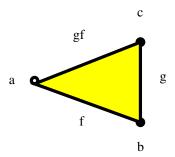
More general: for non-orientable, oriented, ..., \mathcal{F} is still determined by $\mathcal{F}(*)$ but there are group actions that have to be considered.

4. Classifying space of cobordism categories

B: Topological Categories \longrightarrow Spaces,

$$\mathcal{C} \mapsto B\mathcal{C}$$





- morphisms → paths which are homotopy invertible!
- . for every $a \in ob_{\mathcal{C}}$, there is a characteristic map

$$\alpha: mor_{\mathcal{C}}(a, a) \longrightarrow maps([0, 1], \partial; B\mathcal{C}, a) = \Omega B\mathcal{C}$$

- monoidal cats $\mapsto E_1$ -spaces (Ω -spaces)
- symmetric monoidal cats $\mapsto E_{\infty}$ -spaces (Ω^{∞} -spaces)

Theorem (Galatius, Madsen, Tillmann, Weiss)

$$\Omega B(\mathcal{C}ob_d) \simeq \Omega^{\infty} \mathbf{MTSO}(d) = \lim_{n \to \infty} \Omega^{d+n}((U_{d,n}^{\perp})^c)$$

where $U_{d,n}^{\perp}$ is the orthogonal complement of the universal bundle $U_{d,n} \to Gr^+(d,n)$.

Note: the Thom class is in dimension -d!

The characteristic map:

$$mor_{\mathcal{C}ob_d}(\varnothing,\varnothing)\ni W\subset N(W)\subset\mathbb{R}^{d+n}$$
,

$$\alpha(W): S^{d+n} = (R^{d+n})^c \xrightarrow{collapse} N(W)^c \xrightarrow{\phi_{T(W)}} (U_{d,n}^{\perp})^c$$
$$(x,v) \mapsto (T_x W, v).$$

In Thom's theory: $(x,v) \mapsto (N_x W,v) \in (U_{n,d})^c$.

$$H^*(\Omega_0^\infty \mathbf{MTSO}(d), \mathbb{Q}) \simeq \Lambda^*(H^{*>0}(BSO(d); \mathbb{Q})[-d])$$

Theorem (Barrett-Priddy, Quillen, Segal)

For d = 0: $B\Sigma_n \xrightarrow{\alpha} \Omega^{\infty} \mathbf{MTSO}(0) \simeq \Omega^{\infty} S^{\infty}$ is a homology isomorphism in degrees $* \leq n/2$.

Theorem (Madsen-Weiss)

For d=2: $BDiff(F_g) \xrightarrow{\alpha} \Omega^{\infty} \mathbf{MTSO}(2)$ is a homology isomorphism in degrees $* \leq (2g-2)/3$.

⇒ Mumford's Conjecture:

$$H^*(\mathcal{M}_g;\mathbb{Q})) \simeq H^*(B\mathsf{Diff}(F_g),\mathbb{Q}) \sim \mathbb{Q}[\kappa_1,\kappa_2,\dots]$$

Galatius & Randal-Williams prove analogue in higher dimensions for connected sums of $S^d \times S^d$, d > 2.

Filtration of classical cobordism theory

The inclusion of multi-categories

$$exCob_1 \subset \cdots \subset exCob_{d-1} \subset exCob_d \subset \cdots$$

induces on taking multi-classifying spaces a filtration

$$\Omega^{\infty} S^{\infty} \to \cdots \to \Omega^{\infty-(d-1)} \mathbf{MTSO}(d-1) \to \Omega^{\infty-d} \mathbf{MTSO}(d) \dots$$

of Thom's space $\Omega^{\infty}MSO$ which respects the additive and multiplicative structure.

All Thom classes are in degree zero!

For framed manifolds, this is the constant filtration

$$B(ex\mathcal{C}ob_d^{fr}) = \lim_{n \to \infty} \Omega^n (\tilde{U}_{d,n}^{\perp})^c \simeq \Omega^{\infty} S^{\infty}$$

where $\tilde{U}_{d,n}$ is the universal bundle over the Stiefel manifold of framed d-planes in \mathbb{R}^{d+n} .

Cobordism Hypothesis for invertible theories

An extended framed TFT

$$\mathcal{F}: ex\mathcal{C}ob_d^{fr} \longrightarrow \mathcal{V}_d$$

induces a map of infinite loop spaces

$$B\mathcal{F}: B(ex\mathcal{C}ob_d^{fr}) \simeq \Omega^{\infty}S^{\infty} \longrightarrow B(\mathcal{V}_d).$$

 $\Omega^{\infty}S^{\infty}$ is the free infinite loop space on one point. $\Longrightarrow B\mathcal{F}$ is determined by its value on that point, $B\mathcal{F}(*)$.

If \mathcal{F} is *invertible* (in the sense that the images of all morphisms are invertible) it *factors through* $B\mathcal{F}$.

Fibration sequence

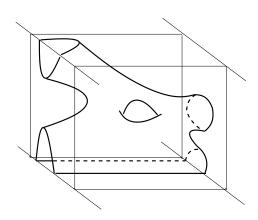
$$\Omega^{\infty}MTSO(d) \longrightarrow \Omega^{\infty}\Sigma^{\infty}(BSO(d)_{+}) \longrightarrow \Omega^{\infty}MTSO(d-1).$$

Genauer proves that this corresponds to natural maps of cobordism categories:

```
\mathcal{C}ob_d: d-dim cobordisms in [a_0,a_1] \times \mathbb{R}^{d+n-1} \times (0,\infty) \cap \mathcal{C}ob_d^{\partial}: d-dim cobordisms in [a_0,a_1] \times \mathbb{R}^{d+n-1} \times [0,\infty) \downarrow \mathcal{C}ob_{d-1}: d-1-dim cobordisms in [a_0,a_1] \times \mathbb{R}^{d-1+n} \times \{0\}
```

An even finer filtration

$$\Omega^{\infty} \mathbf{MSO} \simeq \lim_{n \to \infty} \lim_{d \to \infty} \Omega^{n} (U_{n,d})^{c}
\simeq \lim_{d \to \infty} \lim_{n \to \infty} \Omega^{n} (U_{d,n}^{\perp})^{c}
\simeq \lim_{d \to \infty} \lim_{n \to \infty} B(\mathcal{C}ob_{d,n}^{d})$$



A 2-morphism in $Cob_{2,1}^2$.