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Cell motility: 
locomotion at the micron scale

Amoeboid movement

Sperm cells

fibrous 3D matrix  2D solid substrate fluid

collective migration of 
epithelial cells cell size ~10s microns



Swimming at the micron scale
Hydrodynamic equations are not scale-invariant:
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Swimming at the micron scale
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Reynolds number (Re)

Re =
VL ⇢

⌘

Velocity (typical order of magnitude)  V !
Diameter (typical length scale)  L !
Mass density of the fluid    !
Viscosity of the fluid   

⇢
⌘

⇢/⌘ = 106(m2s�1)�1

Re is a dimensionless measure of relative importance of inertia vs. viscosity !
For water at room temperature: 

Orders of magnitude for swimmers: 
!
Men, sharks:  L=1m, V=1-10 ms-1  Re= 106-107 

!
Bacteria:  L=1x10-6m, V=1-10x10-6 ms-1 Re=10-6–10-5 

At micron scale neglect all inertial forces (for both fluid and swimmer) 7
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Swimming at the micron scale
Is swimming without inertia much different?
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Hydrodynamics is not scale-invariant

0 = ⌘�v �rp

div v = 0

G.I. Taylor
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!
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Purcell’s scallop theorem: trying to swim by a 
reciprocal stroke at low Re is condemned to 
frustration.



Swimming at the micron scale
Swimming at low Re abides by very different, counter-intuitive rules, 
and requires a miniaturized motile machinery.

how do micro-organisms swim? what biological structures are 
required?

do they swim optimally? in what sense and driven by which 
evolutionary pressure? 

can we engineer microscopic self-propelled devices, e.g. for drug 
delivery, for diagnostic or therapeutic purposes?

Fantastic voyage (1966)

RBC + magnetic flexible filament

Dreyfus et al, Nature’05



Swimming at the micron scale
Most unicellular micro-organisms swim by beating cilia or flagella.

system of 
microtubules and 
molecular motors



Triemer, 1999
10 !m

euglenoid movement or metaboly

f ~ 0.1 Hz



van Leeuwenhoek described in 1674 
microscopic motile “animalcules” that 

were green in the middle…

… which challenged classification of 
organisms as either animals or plants.

euglenoid movement or metaboly



Metaboly coexists within individuals with flagellar 
locomotion, perceived as the main motility mode.

Its evolutionary origin and actuation mechanism is unclear, 
and its function controversial.

Fletcher&Theriot’04

a beautiful mystery



goals
Using simple observations, mathematical models and biophysical 
arguments:

what is the purpose of metaboly? is it a competent mode of 
locomotion? why bother if you also have flagella?

how are these elegant shape reconfigurations performed?

can we draw inspiration from euglena for new technologies?

outline
1. micro-swimming with a few formulae

2. qualitatively examining swimming euglena

3. a detour: the actuation mechanism 

4. back to the motility of euglena



micro-swimming with a few formulae
Swimming: ability to advance in a fluid in the absence of 
external propulsive forces by performing cyclic shape 
changes.



micro-swimming with a few formulae
Swimming: ability to advance in a fluid in the absence of 
external propulsive forces by performing cyclic shape 
changes.
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Mathematics of (micro=no inertia) swimming
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2. Find swimmer’s translational and rotational velocities by solving 6 ODEs:  
 

 Total (viscous) force = 0       Total (viscous) torque = 0 

Mathematics of (micro=no inertia) swimming

Fvisc[vDir] = Fvisc[ ċ, ⇠̇ ] = 0 ; c = position+ orientation , ⇠ = shape .
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a minimal axisymmetric swimmer
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Linearity of Stoke’s equations
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ċ = V1(⇠) ⇠̇1 + V2(⇠) ⇠̇2

F. Alouges, A. DeSimone, JNLS’08

Motility map for 1 dof swimmer

Purcell’s scallop theorem
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Motility map for 2 dof swimmer
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11Marey’s “falling cat” @12 fps (Nature 1896)

(through some seemingly miraculous cancellations)
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+ O(ϵ3)

= x0 + ϵ2[g1 ; g2] + O(ϵ3):

Phase-shifted square wave inputs are thus one way of realizing (approximately) the Lie bracket of two
vector � elds. Another approach, which is a smooth approximation of phase-shifted square wave inputs, is
to use phase-shifted sinusoidal inputs.

Example: Consider a kinematic control system describing a simple mobile robot whose position is given
by the pair (x; y) and whose heading angle is θ:

_x = u1 cos θ

_y = u1 sin θ

_θ = u2 :

The velocity input u1 corresponds to \ driving forward" while the velocity input u2 corresponds to \ steer-
ing." Let xT = (x; y; θ). The equations of motion can be written
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Figure 3: The kinematic car.
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Parallel parking  
(driving sidewise by looping of controlled dof’s)
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Eq. of motion as (non-holonomic) constraint



a minimal axisymmetric swimmer
Geometric framework provides a clear model for finding optimal strokes 
(e.g. those that dissipate the least energy in the fluid for a given       )

L.. Heltai, F. Alouges, A. DeSimone

optimal Stokesian robots



quantitative examination of euglena
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Non-reciprocal strokes highly reproducible in shape and pace
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quantitative examination of euglena
Manifold learning algorithm also provides smooth numerical strokes that 
can be used in hydrodynamical calculations…

… but we only have information about 
normal velocity of the cell surface.



The pellicle is a striated envelop 
present in most euglenid species. 

B.S. Leander. Euglenids. tree of life 
web project., 2008

mechanism for shape actuation:

A large number of strips (10s) is 
correlated with pellicle plasticity.



mechanism for shape actuation:

B.S. Leander. Euglenids. tree of life 
web project., 2008



mechanism for shape actuation:

correlation between shape and pellicle configuration

Suzaki, Williamson’85,’86



mechanism for shape actuation:
the pellicle is the machine

Leander, Farmer, 2001

molecular motors

↵0

�
w � = �/w

pellicle shear along 
strip direction 

Fig. 1: the euglenids and their microstructured and 
morphing pellicle (Arroyo and DeSimone, JMPS’14).
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modeling the pellicle kinematics
More general shapes can be obtained if    is not uniform:

Scanning electron micrographs of Eutreptia pertyi (A) and Euglena spirogyra (B) (Scale bar = 10 microns).
Transmission electron micrographs of the substructural features of the euglenid pellicle (here Peranema 

trichophorum, scale bar = 1 micron)

s0m0

a b
c

Given a field of pellicle shears, the local deformation 
(metric tensor) of the surface is

(1)

On the other hand, given a deformed configuration
the local deformation can be written as 

(2)

“Forward problem”: given            , find an isometric embedding 
of the metric tensor in (1)—the target metric. 

“Inverse problem”: given            , find the pellicle shear          
such that (1) and (2) agree. 



modeling the pellicle kinematics
“Forward problem”: given            , find an isometric embedding 
of the metric tensor in (1)—the target metric. 

(1)

Simplifying the equations for a cylindrical pellicle with 
straight strips:

Pellicle shear induces non-Euclidean geometry.

Global existence of solutions to this system of nonlinear PDE 
cannot be expected, and if solutions exist they may be non-unique.

Equations changes character with sign of K



modeling the pellicle kinematics

Nechaev, Voituriez’01

non-Euclidean geometry induced by growth

This geometrical model works because generically thin 
films are easy to bend but very difficult to stretch. 



modeling the pellicle kinematics

Nechaev, Voituriez’01 Sharon, Marder, Swinney’04 Mahadevan, Liang’10

non-Euclidean geometry induced by growth

This geometrical model works because generically thin 
films are easy to bend but very difficult to stretch. 



modeling the pellicle kinematics

non-Euclidean geometry induced by plastic deformation



modeling the pellicle kinematics

non-Euclidean geometry induced by crochet pattern

Gabriele Meyer



modeling the pellicle kinematics

non-Euclidean geometry induced by differential swelling

Klein, Efrati, Sharon, Science’07

Kim et al, Science’12

programable soft 
materials 



modeling the pellicle kinematics

non-Euclidean geometry induced by differential swelling

Klein, Efrati, Sharon, Science’07

Kim et al, Science’12

programable soft 
materials 



modeling the pellicle kinematics

The forward problem (find isometric embedding)

Assuming axisymmetry

Embeddability 
condition



modeling the pellicle kinematics

• K=0

a b c



modeling the pellicle kinematics
• K=cst
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modeling the pellicle kinematics
Non-axisymmetric shapes
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Characterization of achievable non-axisymmetric 
shapes through this mechanism?



modeling the pellicle kinematics
The forward problem (find isometric embedding)

may have infinitely many or no solutions depending on 

When this geometric model fails, mechanics comes to its rescue:

bending energy minimization is a selection principle when 
multiple solutions (Lewicka and Pakzad, 2011)

the system can stretch to approximately accommodate a non-
embeddable target metric (Efrati et al, 2009)

elastic energy density of 
a non-Euclidean shell



modeling the pellicle kinematics
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• Beyond embeddability.



modeling the pellicle kinematics
• Beyond embeddability.
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back to metaboly
More general shapes can be obtained if    is not uniform:

Scanning electron micrographs of Eutreptia pertyi (A) and Euglena spirogyra (B) (Scale bar = 10 microns).
Transmission electron micrographs of the substructural features of the euglenid pellicle (here Peranema 

trichophorum, scale bar = 1 micron)

s0m0

a b
c

Given a reference configuration and a field of pellicle 
shears, the local deformation (metric tensor) of the 
surface is

On the other hand, given a deformed configuration
the local deformation can be written as 

“Forward problem”: given            , find an isometric embedding 
of the metric tensor in (1)—the target metric. 

(1)

(2)

“Inverse problem”: given            , find the pellicle shear          
such that (1) and (2) agree. 



back to metaboly
(kinematics)�
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back to metaboly
(hydrodynamics)



back to metaboly
(hydrodynamics)

I II III IV V VI

Power stroke Recovery stroke

propels the cell forward moves pellicle area and fluid 
volume to the head of the cell



back to metaboly
(hydrodynamics)

Metaboly is a competent yet slow motility mode.

Lighthill efficiency ~ 0.7 - 2%, comparable to ciliates and flagellates, 
but speeds (few !m/s) one order of magnitude smaller.

Azimuthal dissipation: 20%



conclusions
• Precise understanding of new shape actuation principle: 

pellicle kinematics.

• This understanding allows us to reverse-engineer the 
euglenoid movement: it is a competent yet very slow mode.

• …and also provides inspiration for artificial structured 
interfaces: balance between flexibility and controllability.

Arroyo, Heltai, Millán DeSimone, PNAS’12
Arroyo, DeSimone, JMPS’14
Noselli, Arroyo, DeSimone, in preparation


